题目内容

【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如右表.

年龄

访谈

人数

愿意

使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?

(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.

(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?

年龄不低于48岁的人数

年龄低于48岁的人数

合计

愿意使用的人数

不愿意使用的人数

合计

参考公式:,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ)3人,5人,4人;(Ⅱ);(Ⅲ)见解析.

【解析】试题分析:

(1)由分层抽样的定义可得分层抽样的方法抽取12人,各组分别为3人,5人,4人.

(2)列出所有可能的事件,由古典概型公式可得这2人中至少有1人愿意选择此款“流量包”套餐的概率

(3)结合列联表可得 ,则在犯错误不超过1%的前提下可以认为,是否愿意选择此款“流量包”套餐与人的年龄有关.

试题解析:

(Ⅰ)因为,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,各组分别为3人,5人,4人.

(Ⅱ)第5组的6人中,不愿意选择此款“流量包”套餐的4人分别记作:A、B、C、D,愿意选择此款“流量包”套餐2人分别记作x、y.则从6人中选取2人有:AB,AC,AD,Ax,Ay,BC,BD,Bx,By,CD,Cx,Cy,Dx,Dy,xy共15个结果,其中至少有1人愿意选择此款“流量包”:Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,xy

共9个结果,所以这2人中至少有1人愿意选择此款“流量包”套餐的概率

(Ⅲ)2×2列联表:

年龄不低于48岁的人数

年龄低于48岁的人数

合计

愿意使用的人数

14

28

42

不愿意使用的人数

7

1

8

合计

21

29

50

∴在犯错误不超过1%的前提下可以认为,是否愿意选择此款“流量包”套餐与人的年龄有关.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网