题目内容
2.已知a1=1,an=an-1cosx+cos(n-1)x(x≠kπ,k∈z),求an.分析 通过an=an-1cosx+cos(n-1)x可知ai+1=aicosx+cosix(i=0,1,2,…,n),两边同时乘以cosn-ix并累加、整理即得结论.
解答 解:∵an=an-1cosx+cos(n-1)x,
∴ai+1=aicosx+cosix(i=0,1,2,…,n),
∴cosn-ix•ai+1=aicosn-i+1x+cosn-ix•cosix(i=0,1,2,…,n),
累加得:an+1+$\sum_{i=1}^{n}$cosn-ix•ai+1=a1•cosnx+$\sum_{i=1}^{n}$cosn-ix•ai+1+$\sum_{i=0}^{n}$cosn-ix•cosix,
∴an+1=a1•cosnx+$\sum_{i=0}^{n}$cosn-ix•cosix,
又∵a1=1,
∴an+1=cosnx+$\sum_{i=0}^{n}$cosn-ix•cosix,
∴an=cosn-1x+$\sum_{i=0}^{n-1}$cosn-i-1x•cosix
=2cosn-1x+$\sum_{i=1}^{n-1}$cosn-i-1x•cosix.
点评 本题考查数列的通项,考查运算求解能力,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
10.在△ABC中,AB=7,AC=6,M是BC的中点,AM=4,则BC等于( )
A. | $\sqrt{21}$ | B. | $\sqrt{106}$ | C. | $\sqrt{69}$ | D. | $\sqrt{154}$ |