题目内容
【题目】若是互不相同的空间直线,是不重合的平面,则下列命题中为真命题的是( )
A. 若,则 B. 若,则
C. 若,则 D. 若,则
【答案】C
【解析】
析:对于A,考虑空间两直线的位置关系和面面平行的性质定理;
对于B,考虑线面垂直的判定定理及面面垂直的性质定理;
对于C,考虑面面垂直的判定定理;
对于D,考虑空间两条直线的位置关系及平行公理.
解答:解:选项A中,l除平行n外,还有异面的位置关系,则A不正确.
选项B中,l与β的位置关系有相交、平行、在β内三种,则B不正确.
选项C中,由l∥β,设经过l的平面与β相交,交线为c,则l∥c,又l⊥α,故c⊥α,又c?β,所以α⊥β,正确.选项D中,l与m的位置关系还有相交和异面,故C不正确.
故选C.
【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,如将年人流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率;(,)
(2)水电站希望安装的发电机尽可能运行最多,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
年流入量 | |||
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为4000万元,若某台发电机未运行,则该台年亏损600万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
【题目】总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20