题目内容

7.定义在R上的可导函数f(x),且f(x)图象连续不断,f′(x)是f(x)的导数,当x≠0时,f′(x)+$\frac{f(x)}{x}$>0,则哈数g(x)=f(x)+$\frac{1}{x}$的零点的个数(  )
A.0B.1C.2D.0或2

分析 由题意可得得$\frac{x{f}^{′}(x)+f(x)}{x}$>0,进而可得函数xf(x)单调性,而函数g(x)=f(x)+$\frac{1}{x}$=$\frac{xf(x)+1}{x}$,的零点个数等价为函数y=xf(x)+1的零点个数,
可得y=xf(x)+1>1,无零点

解答 解:由f'(x)+x-1f(x)>0,得$\frac{x{f}^{′}(x)+f(x)}{x}$>0,
当x>0时,xf'(x)+f(x)>0,即[xf(x)]'>0,函数xf(x)单调递增;
当x<0时,xf'(x)+f(x)<0,即[xf(x)]'<0,函数xf(x)单调递减.
又g(x)=f(x)+$\frac{1}{x}$=$\frac{xf(x)+1}{x}$,函数g(x)=$\frac{xf(x)+1}{x}$的零点个数等价为函数y=xf(x)+1的零点个数.
当x>0时,y=xf(x)+1>1,当x<0时,y=xf(x)+1>1,所以函数y=xf(x)+1无零点,
所以函数g(x)=f(x)+x-1的零点个数为0个,
故选:A.

点评 本题考查根的存在性及根的个数的判断,涉及函数的单调性,属中档题,关键是构造函数g(x)=xf(x)+1

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网