题目内容
6.定义数列如下:a1=2,an+1=an2-an+1,n∈N*,求证:(Ⅰ)对于n∈N*恒有an+1>an成立;
(Ⅱ)1-$\frac{1}{{{2^{2015}}}}<\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$<1.
分析 (Ⅰ)由已知得an+1-an=an2-2an+1=(an-1)2≥0,a1=2,由此能证明an+1>an.
(Ⅱ)由${a_{n+1}}={a_n}^2-{a_n}+1$,得:an+1-1=an(an-1),由此利用累乘法得an+1=anan-1…a2a1+1,从而$\frac{1}{a_n}=\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n+1}}-1}}$,进而能证明1-$\frac{1}{{{2^{2015}}}}<\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$<1.
解答 证明:(Ⅰ)∵a1=2,an+1=an2-an+1,n∈N*,
∴an+1-an=an2-2an+1=(an-1)2≥0,a1=2>1,
∴由归纳法可知an+1>an…..(4分)
(Ⅱ)由${a_{n+1}}={a_n}^2-{a_n}+1$,得:an+1-1=an(an-1),
∴an-1=an-1(an-1-1)
…a2-1=a1(a1-1)
以上各式两边分别相乘得:
an+1-1=anan-1…a2a1(a1-1),
又a1=2,∴an+1=anan-1…a2a1+1…..(7分)
又∵an+1-1=an(an-1),
∴$\frac{1}{{{a_{n+1}}-1}}=\frac{1}{{{a_n}-1}}-\frac{1}{a_n}$,
∴$\frac{1}{a_n}=\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n+1}}-1}}$,
∴$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$=$(\frac{1}{{{a_1}-1}}-\frac{1}{{{a_2}-1}})+(\frac{1}{{{a_2}-1}}-\frac{1}{{{a_3}-1}})+…+(\frac{1}{{{a_{2015}}-1}}-\frac{1}{{{a_{2016}}-1}})$=$\frac{1}{{{a_1}-1}}-\frac{1}{{{a_{2016}}-1}}$=$1-\frac{1}{{{a_1}{a_{2…}}{a_{2015}}}}$<1
又${a_1}{a_2}…{a_{2015}}>{a_1}^{2015}={2^{2015}}$,
∴$1-\frac{1}{{{a_1}{a_2}…{a_{2015}}}}>1-\frac{1}{{{2^{2015}}}}$,
∴1-$\frac{1}{{{2^{2015}}}}<\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$<1. …..(15分)
点评 本题考查不等式的证明,是中档题,解题时要认真审题,注意归纳法、累乘法、裂项法的合理运用.
A. | [0,+∞) | B. | (-∞,0] | C. | (-∞,0) | D. | (0,+∞) |
A. | 关于直线x=$\frac{π}{12}$对称 | B. | 关于直线x=$\frac{5π}{12}$对称 | ||
C. | 关于点($\frac{π}{12}$,0)对称 | D. | 关于点($\frac{5π}{12}$,0)对称 |
A. | (-∞,1) | B. | (-2,1) | C. | (1,4) | D. | (1,+∞) |
A. | y=x3 | B. | y=2|x| | C. | y=-x2+1 | D. | y=$\frac{1}{x^2}$ |