题目内容
【题目】已知函数.
(1)当时,求函数的单调区间和极值;
(2)若不等式恒成立,求的值.
【答案】(1)见解析;(2)1.
【解析】
(1)a=1时,f(x)=,f′(x)=,令f′(x)==0,解得x=e.通过列表可得函数f(x)的单调递区间及其极值.(2)由题意可得:x>0,由不等式恒成立,即x﹣1﹣alnx≥0恒成立.令g(x)=x﹣1﹣alnx≥0,g(1)=0,x∈(0,+∞).g′(x)=1﹣=.对a分类讨论,利用导数研究函数的单调性极值与最值即可得出.
(1)a=1时,f(x)=,f′(x)=,
令f′(x)==0,解得x=e.
x | (0,e) | e | (e,+∞) |
f′(x) | + | 0 | ﹣ |
f(x) | 单调递增 | 极大值 | 单调递减 |
可得函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞),可得极大值为f(e)=,为极小值.
(2)由题意可得:x>0,由不等式恒成立,即x﹣1﹣alnx≥0恒成立.
令g(x)=x﹣1﹣alnx≥0,g(1)=0,x∈(0,+∞).
g′(x)=1﹣=.
①若a<0,则函数g(x)在(0,+∞)上单调递增,又g(1)=0,∴x∈(0,1)时,g(x)<0,不符合题意,舍去.
②若0<a<1,则函数g(x)在(a,+∞)上g′(x)>0,即函数g(x)单调递增,又g(1)=0,∴x∈(a,1)时,g(x)<0,不符合题意,舍去.
③若a=1,则函数g(x)在(1,+∞)上g′(x)>0,即函数g(x)单调递增,x∈(a,1)时,g′(x)<0,函数g(x)单调递减.
∴x=1时,函数g(x)取得极小值即最小值,又g(1)=0,∴x>0时,g(x)≥0恒成立.
③若1<a,则函数g(x)在(0,a)上g′(x)<0,即函数g(x)单调递减,又g(1)=0,∴x∈(1,a)时,g(x)<0,不符合题意,舍去.
综上可得:a=1.