题目内容
【题目】已知函数.
(1)讨论函数的单调性;
(2)当时,设函数有最小值,求的值域.
【答案】(1)见解析;(2)
【解析】
(1)先求出,分和两种情形,利用导数的符号判断函数的单调性即可.
(2)求出并将其化简为,构建新函数,利用(1)的单调性及零点存在定理可得有唯一的,它就是函数最小值点,利用导数可求该最小值的值域.
解:(1)定义域为,
.
令,①
,
当时,,,
即且不恒为零,故单调递增区间为,,
当时,,方程①两根为,,
由于,
.
故,
因此当时,,单调递增,
,,单调递减,
,,单调递减,
,,单调递增,
综上,当时,在单调递增,单调递增,
当时,在单调递增,
,单调递减;
在单调递增.
(2),
设,
由(1)知,时,在单调递增,
由于,,
故在存在唯一,使,
,
又当,,即,单调递减,
,,即,单调递增,
故时,
,.
又设,,
,
故单调递增,故,
即,即.
练习册系列答案
相关题目
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 | 不超过 | |
第一种生产方式 | ||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:,