题目内容
【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.
【答案】(1);(2).
【解析】
(1)利用将点的横坐标代入直线,求得点的坐标,代入的坐标运算,求得的值,也即求得点的坐标,将的坐标代入椭圆,结合,解方程组求得的值,进而求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆的方程并写出根与系数关系,由此求得的面积,利用导数求得面积的最大值,并由三角形与内切圆有关的面积公式,求得内切圆的半径的最大值.
(1)设椭圆方程为,点在直线上,且点在轴上的射影恰好是椭圆的右焦点,则点.
∵
∴
又
解得
∴椭圆方程为
(2)由(1)知,,过点的直线与椭圆交于两点,
则的周长为,又(为三角形内切圆半径),
∴当的面积最大时,其内切圆面积最大.
设直线的方程为:,,则
消去得,
∴
∴
令,则,∴
令,
当时,,
在上单调递增,
∴,当时取等号,
即当时,的面积最大值为3,
结合,得的最大值为,
∴内切圆面积的最大值为.
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在,实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
(Ⅰ)求图中的值;
(Ⅱ)用样本估计总体,以频率作为概率,若在,两块试验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(Ⅲ)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | <>0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)