题目内容
【题目】如图,在梯形ABCD中,AD//BC,∠ABC=,,∠ADC=,PA⊥平面ABCD且PA=.
(1)求直线AD到平面PBC的距离;
(2)求出点A到直线PC的距离;
(3)在线段AD上是否存在一点F,使点A到平面PCF的距离为.
【答案】(1)(2)(3)存在,证明见解析.
【解析】
(1)直线AD到平面PBC的距离可转化为点A到平面PBC的距离,作于,可证明AH的长为点A到平面PBC的距离,求解即可(2)作于,则AE的长即为点A到PC的距离,利用三角形面积的等积法即可求解(3)假设存在点F,由(2)知只需平面,转化为是否存在即可求解.
(1) 作于,
由面ABCD,
,
,又,
平面PAB,
,又,
面PBC,
即AH的长为点A到平面PBC的距离,也即直线AD到平面PBC的距离,
在等腰中,,
所以直线AD到平面PBC的距离为.
(2)作于,则AE的长即为点A到PC的距离.
在中, ,
,
即点A到直线PC的距离为.
(3)假设在线段AD上是存在一点F,使点A到平面PCF的距离为,
设
过C作于M,在中,,
可得,,
所以,
由(2)知,若存在F,使得平面即可,
由条件可知,只需,则平面
设,则,
在中,由余弦定理可得,
若,在中,
,
即,
解得,
即在AD上存在一点F,当时,
,
又,,
平面,
,又,,
平面,即点A到平面PCF的距离为,
此时满足条件.
练习册系列答案
相关题目