题目内容
(本小题满分13分)如图甲,直角梯形
中,
,
,点
、
分别在
,
上,且
,
,
,
,现将梯形
沿
折起,使平面
与平面
垂直(如图乙).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231335589772334.gif)
(Ⅰ)求证:
平面
;
(Ⅱ)当
的长为何值时,
二面角
的大小为
?
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558603301.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558618333.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558696500.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558696327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558728211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558743235.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558759242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558774455.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558790452.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558790286.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558868402.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558603301.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558930368.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558946435.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558962435.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231335589772334.gif)
(Ⅰ)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133558993260.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559008385.gif)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559040250.gif)
二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559055449.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559071227.gif)
(Ⅰ)见解析 (Ⅱ) ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559086424.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559086424.gif)
法一:(Ⅰ)MB//NC,MB
平面DNC,NC
平面DNC,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231335591333903.gif)
MB//平面DNC.
同理MA//平面DNC,又MA
MB="M," 且MA,MB
平面MAB.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082313355914998.gif)
. (6分)
(Ⅱ)过N作NH
交BC延长线于H,连HN,
平面AMND
平面MNCB,DN
MN,
DN
平面MBCN,从而
,
为二面角D-BC-N的平面角. (9分)
由MB=4,BC=2,
知
,
.
(10分)
由条件知:
(13分)
解法二:如图,以点N为坐标原点,以NM,NC,ND所在直线分别作为
轴,
轴和
轴,建立空间直角坐标系
易得NC=3,MN=
,
设
,则
.
(I)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082313355914998.gif)
,
∵
,
∴
与平面
共面,又
,
. (6分)
(II)设平面DBC的法向量![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600007214.gif)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600038727.gif)
则
,令
,则
,
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600007214.gif)
. (8分)又平面NBC的法向量![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600132217.gif)
. (9分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600241271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600256611.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600272758.gif)
即:
又
即
(13分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559102194.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559118103.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231335591333903.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082313355914998.gif)
同理MA//平面DNC,又MA
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559164146.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559118103.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082313355914998.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231335592271129.gif)
(Ⅱ)过N作NH
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559242234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559242180.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559305108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559305108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082313355914998.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559305108.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559430303.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559461286.gif)
由MB=4,BC=2,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559492467.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559508463.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559523599.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559539626.gif)
由条件知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231335595541140.gif)
解法二:如图,以点N为坐标原点,以NM,NC,ND所在直线分别作为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559570182.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559586191.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559601127.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559695377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559710209.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559851255.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231335598661162.gif)
(I)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559882931.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082313355914998.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559913904.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559929889.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559944246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559008385.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559976538.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559991529.gif)
(II)设平面DBC的法向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600007214.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600022386.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600038727.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600054831.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600069233.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600085379.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600085338.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600007214.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600116420.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600132217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600225295.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600241271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600256611.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600272758.gif)
即:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600288688.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133600303353.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133559086424.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目