题目内容

【题目】数列{an}满足an+1+an=4n﹣3(n∈N*
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1

【答案】解:( I)由题意得an+1+an=4n﹣3…①an+2+an+1=4n+1…②.
②﹣①得an+2﹣an=4,
∵{an}是等差数列,设公差为d,∴d=2,
∵a1+a2=1∴a1+a1+d=1,∴

(Ⅱ)∵a1=2,a1+a2=1,
∴a2=﹣1.
又∵an+2﹣an=4,
∴数列的奇数项与偶数项分别成等差数列,公差均为4,
S2n+1=(a1+a3+…+a2n+1)+(a2+a4+…+a2n
=
=4n2+n+2
【解析】(Ⅰ)由题意得an+1+an=4n﹣3,an+2+an+1=4n+1.所以an+2﹣an=4,由{an}是等差数列,公差d=2,能求出 .(Ⅱ)由a1=2,a1+a2=1,知a2=﹣1.因为an+2﹣an=4,所以数列的奇数项与偶数项分别成等差数列,公差均为4,故a2n1=4n﹣2,a2n=4n﹣5.由此能求出S2n+1
【考点精析】掌握等差数列的通项公式(及其变式)和等差数列的前n项和公式是解答本题的根本,需要知道通项公式:;前n项和公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网