题目内容

【题目】已知全集U=R,函数y= + 的定义域为A,函数y= 的定义域为B.
(1)求集合A、B.
(2)(UA)∪(UB).

【答案】
(1)解:由 x≥2

A={x|x≥2}

x≥﹣2且x≠3

B={x|x≥﹣2且x≠3}


(2)解:A∩B={x|x≥2且x≠3}

∴(CUA)∪(CUB)=CU(A∩B)={x|x<2或x=3}


【解析】(1)根据负数没有平方根及分母不为零列出不等式组,求出不等式组的解集确定出集合A,B.(2)先利用(CUA)(CUB)=CU(A∩B),再结合所求出的集合利用交集的定义即可得到(CUA)∪(CUB).
【考点精析】本题主要考查了交、并、补集的混合运算和函数的定义域及其求法的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法;求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网