题目内容
【题目】已知函数f(x)= x3﹣x2+x.
(1)求函数f(x)在[﹣1,2]上的最大值和最小值;
(2)若函数g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的单调区间.
【答案】
(1)解:f′(x)=x2﹣2x+1≥0,
故f(x)在[﹣1,2]递增,
f(x)max=f(2)= ,f(x)min=f(﹣1)=﹣
(2)解:g(x)=f(x)﹣4x= x3﹣x2﹣3x,x∈[﹣3,2],
g′(x)=x2﹣2x﹣3=(x﹣3)(x+1),
令g′(x)>0,解得:x<﹣1,令g′(x)<0,解得:x>﹣1,
故g(x)在[﹣3,﹣1]递增,在[﹣1,2]递减.
【解析】(1)求出函数的导数,根据函数的单调性求出函数的最值即可;(2)求出函数g(x)的导数,解关于导函数的不等式,求出函数的单调区间即可.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.
练习册系列答案
相关题目