题目内容
某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为(0<<1,则出厂价相应提高的比例为0.7,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(1)若年销售量增加的比例为0.4,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?
(2)年销售量关于的函数为,则当为何值时,本年度的年利润最大?最大利润为多少?
(1)若年销售量增加的比例为0.4,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?
(2)年销售量关于的函数为,则当为何值时,本年度的年利润最大?最大利润为多少?
(1);(2)当时,本年度的年利润最大,最大利润为20000万元.
试题分析:(1)由题意得:本年度每辆车的投入成本为10×(1+x);
出厂价为13×(1+0.7x);年销售量为5000×(1+0.4x), 2分
因此本年度的利润为
即: 6分
由, 得 8分
(2)本年度的利润为
则 10分
由
当是增函数;当是减函数.
∴当时,万元, 12分
因为在(0,1)上只有一个极大值,所以它是最大值, 14分
所以当时,本年度的年利润最大,最大利润为20000万元. 16分
点评:研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立模型的步骤可分为: (1) 分析问题中哪些是变量,哪些是常量,分别用字母表示; (2) 根据所给条件,运用数学知识,确定等量关系; (3) 写出的解析式并指明定义域。
练习册系列答案
相关题目