题目内容
【题目】为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )
A.7班、14班、15班B.14班、7班、15班
C.14班、15班、7班D.15班、14班、7班
【答案】C
【解析】
分别假设甲、乙、丙预测准确,分析三个人的预测结果,由此能求出一、二、三名的班级.
假设甲预测准确,则乙和丙都预测错误,
班名次比15班靠后,7班没能赢15班,故甲预测错误;
假设乙预测准确,则甲和乙都预测错误,
班不是第一名,14班名次比15班靠前,7班没能赢15班,
则获得一、二、三名的班级依次为14班,15班,7班;
假设丙预测准确,则甲和乙都预测错误,
班不是第一名,14班名次比15班靠后,7班能赢15班,不合题意.
综上,得一、二、三名的班级依次为14班,15班,7班.
故选:C.
【题目】某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表.
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
(i)完成下表(计算结果精确到0.1);
印刷册数(千册) | 2 | 3 | 4 | 5 | 8 | |
单册成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
(ii)分别计算模型甲与模型乙的残差平方和和,并通过比较,的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为10千册,若印刷厂以每册5元的价格将书籍出售给订货商,试估计印刷厂二次印刷获得的利润.(按(1)中拟合效果较好的模型计算印刷单册书的成本)