题目内容
【题目】已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)﹣b 是奇函数”.
(1)将函数g(x)=x3﹣3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)= 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)﹣b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
【答案】
(1)解:平移后图象对应的函数解析式为y=(x+1)3﹣3(x+1)2+2,整理得y=x3﹣3x,
由于函数y=x3﹣3x是奇函数,由题设真命题知,函数g(x)图象对称中心的坐标是(1,﹣2).
(2)解:设h(x)= 的对称中心为P(a,b),
由题设知函数h(x+a)﹣b是奇函数.
设f(x)=h(x+a)﹣b,则f(x)= ﹣b,
即f(x)= .
由不等式 的解集关于原点对称,则﹣a+(4﹣a)=0,得a=2.
此时f(x)= ﹣b,x∈(﹣2,2).
任取x∈(﹣2,2),由f(﹣x)+f(x)=0,得b=1,
所以函数h(x)= 图象对称中心的坐标是(2,1).
(3)解:此命题是假命题.
举反例说明:函数f(x)=x的图象关于直线y=﹣x成轴对称图象,
但是对任意实数a和b,函数y=f(x+a)﹣b,即y=x+a﹣b总不是偶函数.
修改后的真命题:“函数y=f(x)的图象关于直线x=a成轴对称图象”的充要条件是“函数y=f(x+a)是偶函数”.
【解析】(1)先写出平移后图象对应的函数解析式为y=(x+1)3﹣3(x+1)2+2,整理得y=x3﹣3x,由于函数y=x3﹣3x是奇函数,利用题设真命题知,函数g(x)图象对称中心.(2)设h(x)= 的对称中心为P(a,b),由题设知函数h(x+a)﹣b是奇函数,从而求出a,b的值,即可得出图象对称中心的坐标.(3)此命题是假命题.举反例说明:函数f(x)=x的图象关于直线y=﹣x成轴对称图象,但是对任意实数a和b,函数y=f(x+a)﹣b,即y=x+a﹣b总不是偶函数.修改后的真命题:“函数y=f(x)的图象关于直线x=a成轴对称图象”的充要条件是“函数y=f(x+a)是偶函数”.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系,以及对函数单调性的判断方法的理解,了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.