题目内容

已知函数f(x)=2
3
sinωxcosωx-2sin2ωx+1(ω>0)的最小正周期为π,
(Ⅰ)当x∈[0,
π
2
]时,求函数f(x)的取值范围;
(Ⅱ)若α是锐角,且f(
a
2
-
π
6
)=
6
5
,求cosα的值.
(I)函数f(x)=2
3
sinωxcosωx-2sin2ωx+1
=
3
sin2ωx-2×
1-cos2ωx
2
+1

=2sin(2ωx+
π
6
).
因为函数f(x)的最小正周期为π,即
,∴ω=1.
∴f(x)=2sin(2x+
π
6
).
∵x∈[0,
π
2
],∴2x+
π
6
∈[
π
6
6
]
,2sin(2x+
π
6
)∈[-1,2].
∴f(x)的取值范围为[-1,2].
(II)由(1)可知f(
a
2
-
π
6
)=2sin(α-
π
6
)=
6
5

∴sin(α-
π
6
)=
3
5
,∵α是锐角
cos(α-
π
6
)=
4
5

∴cosα=cos[(α-
π
6
)+
π
6
]
=cos(α-
π
6
)cos
π
6
-sin(α-
π
6
)sin
π
6

=
4
5
×
3
2
-
3
5
×
1
2
=
4
3
-3
10
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网