题目内容
已知函数f(x)=2
sinωxcosωx-2sin2ωx+1(ω>0)的最小正周期为π,
(Ⅰ)当x∈[0,
]时,求函数f(x)的取值范围;
(Ⅱ)若α是锐角,且f(
-
)=
,求cosα的值.
3 |
(Ⅰ)当x∈[0,
π |
2 |
(Ⅱ)若α是锐角,且f(
a |
2 |
π |
6 |
6 |
5 |
(I)函数f(x)=2
sinωxcosωx-2sin2ωx+1
=
sin2ωx-2×
+1
=2sin(2ωx+
).
因为函数f(x)的最小正周期为π,即
=π,∴ω=1.
∴f(x)=2sin(2x+
).
∵x∈[0,
],∴2x+
∈[
,
],2sin(2x+
)∈[-1,2].
∴f(x)的取值范围为[-1,2].
(II)由(1)可知f(
-
)=2sin(α-
)=
,
∴sin(α-
)=
,∵α是锐角
∴cos(α-
)=
,
∴cosα=cos[(α-
)+
]
=cos(α-
)cos
-sin(α-
)sin
=
×
-
×
=
.
3 |
=
3 |
1-cos2ωx |
2 |
=2sin(2ωx+
π |
6 |
因为函数f(x)的最小正周期为π,即
2π |
2ω |
∴f(x)=2sin(2x+
π |
6 |
∵x∈[0,
π |
2 |
π |
6 |
π |
6 |
7π |
6 |
π |
6 |
∴f(x)的取值范围为[-1,2].
(II)由(1)可知f(
a |
2 |
π |
6 |
π |
6 |
6 |
5 |
∴sin(α-
π |
6 |
3 |
5 |
∴cos(α-
π |
6 |
4 |
5 |
∴cosα=cos[(α-
π |
6 |
π |
6 |
=cos(α-
π |
6 |
π |
6 |
π |
6 |
π |
6 |
=
4 |
5 |
| ||
2 |
3 |
5 |
1 |
2 |
4
| ||
10 |
练习册系列答案
相关题目