题目内容
【题目】如图,设椭圆: ,长轴的右端点与抛物线: 的焦点重合,且椭圆的离心率是.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过作直线交抛物线于, 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.
【答案】(Ⅰ); (Ⅱ)面积的最小值为9, .
【解析】试题分析:(Ⅰ)由已知求出抛物线的焦点坐标即得椭圆中的,再由离心率可求得,从而得值,得标准方程;
(Ⅱ)本题考查圆锥曲线中的三角形面积问题,解题方法是设直线方程为,设,把直线方程代入抛物线方程,化为的一元二次方程,由韦达定理得,由弦长公式得,同样过与直线垂直的直线方程为,同样代入椭圆方程,利用韦达定理得,其中, 是点的横坐标,于是可得,这样就可用表示出的面积, ,接着可设,用换元法把表示为的函数,利用导数的知识可求得最大值.
试题解析:
(Ⅰ)∵椭圆: ,长轴的右端点与抛物线: 的焦点重合,
∴,
又∵椭圆的离心率是,∴, ,
∴椭圆的标准方程为.
(Ⅱ)过点的直线的方程设为,设, ,
联立得,
∴, ,
∴.
过且与直线垂直的直线设为,
联立得,
∴,故,
∴,
面积.
令,则, ,
令,则,即时, 面积最小,
即当时, 面积的最小值为9,
此时直线的方程为.
【题目】为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院
的50人进行了问卷调查,得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(1)用分层抽样的方法在患心肺疾病的人群中抽取6人,其中男性抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算出统计量,判断是否有的把握认为
患心肺疾病与性别有关?
右面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式: )