题目内容
【题目】已知函数.
(1)证明:在区间上存在唯一零点;
(2)令,若时有最大值,求实数的取值范围.
【答案】(1)见解析(2)
【解析】
(1)对求导得到,再对求导,得到,根据的正负,得到的单调性,再由定义域求出的正负,从而得到的单调性,由零点存在定理,进行证明;(2)对求导,得到,令,根据(1)的结论,可得在上有唯一零点,再按和进行分类,分别研究的单调性,从而得到有最大值时对的要求,得到答案.
(1)
易知在区间上恒成立,则在单调递减
所以=0,即f(x)在单调递增,
又,则在区间必存在唯一零点
(2)
所以
令,则
由(1)知:则在单调递增
又,即在上有唯一零点
当时,由得,所以在区间单调递增;在区间单调递减;此时h(x)存在最大值h(0),满足题意;
当时,由有两个不同零点x=0及,所以h(x)在区间(0,a)单调递减;在区间,单调递增;此时h(x)有极大值h(0)=2a
由h(x)有最大值,可得;,解得,即
综上所述:当时,h(x)在有最大值
【题目】已知A,B,C三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).
A班 | 6 | 6.5 | 7 | |
B班 | 6 | 7 | 8 | |
C班 | 5 | 6 | 7 | 8 |
(1)试估计C班学生人数;
(2)从A班和B班抽出来的学生中各选一名,记A班选出的学生为甲,B班选出的学生为乙,若学生锻炼相互独立,求甲的锻炼时间大于乙的锻炼时间的概率.
【题目】下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是( )
游戏1 | 游戏2 | 游戏3 |
袋中装有一个红球和一个白球 | 袋中装有2个红球和2个白球 | 袋中装有3个红球和1个白球 |
取1个球, | 取1个球,再取1个球 | 取1个球,再取1个球 |
取出的球是红球→甲胜 | 取出的两个球同色→甲胜 | 取出的两个球同色→甲胜 |
取出的球是白球→乙胜 | 取出的两个球不同色→乙胜 | 取出的两个球不同色→乙胜 |
A.游戏1B.游戏2C.游戏3D.游戏2和游戏3