题目内容
【题目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若ARB,求实数m的取值范围.
【答案】(1)2;(2)
【解析】试题分析:(1)根据一元二次不等式的解法,对A,B集合中的不等式进行因式分解,从而解出集合A,B,再根据A∩B=[0,3],求出实数m的值;
(2)由(1)解出的集合A,B,因为ACRB,根据子集的定义和补集的定义,列出等式进行求解.
解:由已知得:A={x|﹣1≤x≤3},
B={x|m﹣2≤x≤m+2}.
(1)∵A∩B=[0,3]
∴
∴,
∴m=2;
(2)CRB={x|x<m﹣2,或x>m+2}
∵ACRB,
∴m﹣2>3,或m+2<﹣1,
∴m>5,或m<﹣3.
【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
附表及公式
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX.