题目内容
设数列{an}是以2为首项,1为公差的等差数,{bn}是以1为首项,2为公比的等比数列,则ba1+ba2+ba3+…+ba6等于( )
A.78 | B.84 | C.124 | D.126 |
∵数列{an}是以2为首项,1为公差的等差数列,∴an=2+(n-1)×1=n+1.
则a1=2,a2=3,a3=4,a4=5,a5=6,a6=7,
{bn}是以1为首项,2为公比的等比数列,则bn=1×2n-1=2n-1,
∴ba1+ba2+…+ba6=b2+b3+b4+b5+b6+b7
=2+4+8+16+32+64=126.
故选:D.
则a1=2,a2=3,a3=4,a4=5,a5=6,a6=7,
{bn}是以1为首项,2为公比的等比数列,则bn=1×2n-1=2n-1,
∴ba1+ba2+…+ba6=b2+b3+b4+b5+b6+b7
=2+4+8+16+32+64=126.
故选:D.
练习册系列答案
相关题目