题目内容
已知椭圆C:
+
=1(a>b>0)有两个顶点在直线x+2y-2=0上
(1)求椭圆C的方程;
(2)当直线l:y=x+m与椭圆C相交时,求m的取值范围;
(3)设直线l:y=x+m与椭圆C交于A,B两点,O为坐标原点,若以为AB直径的圆过原点,求m的值.
x2 |
a2 |
y2 |
b2 |
(1)求椭圆C的方程;
(2)当直线l:y=x+m与椭圆C相交时,求m的取值范围;
(3)设直线l:y=x+m与椭圆C交于A,B两点,O为坐标原点,若以为AB直径的圆过原点,求m的值.
(1)直线x+2y-2=0与坐标轴交于两点(2,0),(0,1),
∴a=2,b=1,
∴椭圆C的方程为
+y2=1;
(2)直线y=x+m代入椭圆方程,消去y整理得:5x2+8mx+4m2-4=0,
∵直线l:y=x+m与椭圆C相交,
∴△=(8m)2-4×5×(4m2-4)>0,
即-16m2+80>0,解得-
<m<
.
(3)设A,B两点的坐标分别为(x1,y1)、(x2,y2),
由(2)得x1+x2=-
,x1x2=
,
∵以为AB直径的圆过原点,
∴
⊥
,
∴
•
=0,
∴x1x2+y1y2=0,
∴2x1x2+m(x1+x2)+m2=0,
即2•
-
+m2=0,
解得m=±
.
∴a=2,b=1,
∴椭圆C的方程为
x2 |
4 |
(2)直线y=x+m代入椭圆方程,消去y整理得:5x2+8mx+4m2-4=0,
∵直线l:y=x+m与椭圆C相交,
∴△=(8m)2-4×5×(4m2-4)>0,
即-16m2+80>0,解得-
5 |
5 |
(3)设A,B两点的坐标分别为(x1,y1)、(x2,y2),
由(2)得x1+x2=-
8m |
5 |
4m2-4 |
5 |
∵以为AB直径的圆过原点,
∴
OA |
OB |
∴
OA |
OB |
∴x1x2+y1y2=0,
∴2x1x2+m(x1+x2)+m2=0,
即2•
4m2-4 |
5 |
8m2 |
5 |
解得m=±
2 |
5 |
10 |
练习册系列答案
相关题目