题目内容

已知抛物线C:y=-x2+2x,在点A(0,0),B(2,0)分别作抛物线的切线L1、L2
(1)求切线L1和L2的方程;
(2)求抛物线C与切线L1和L2所围成的面积S.
(1)y=-2x+2,A(0,0),B(2,0)都在抛物线上,
则K1=2,K2=-2,切线L1方程:y=2x,
切线L2方程:y=-2x+4
(2)由
y=2x
y=-2x+4
x=1
y=2
P(1,2)--(7分)
S=
10
[2x-(-x2+2x)]dx+
21
[(-2x+4)-(-x2+2x)]dx

=
10
x2dx+
21
(x2-4x+4)dx

=(
1
3
x3)
|10
+(
1
3
x3-2x2+4x)
|21

=
1
3
+(
8
3
-
1
3
-2)=
2
3

答:抛物线C与切线L1和L2所围成的面积为
2
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网