题目内容
某商场准备在五一劳动节期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.
(Ⅰ)试求选出的3种商品中至少有一种日用商品的概率;
(Ⅱ)商场对选出的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高90元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖与否是等可能的,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?
(Ⅰ)P=1-.
(Ⅱ)要使促销方案对商场有利,应使顾客获奖奖金数的期望值不大于商场的提价数额,因此应有1.5x≤90,所以x≤60,故商场应将中奖奖金数额最高定为60元,才能使促销方案对自己有利.
解析试题分析:(Ⅰ)从3种服装商品、2种家电商品、4种日用商品中,选出3种商品,一共可以有种不同的选法. 选出的3种商品中,没有日用商品的选法有种,所以选出的3种商品中至少有一种日用商品的概率为P=1-=1-.
(Ⅱ)假设商场将中奖奖金数额定为x元,则顾客在三次抽奖中所获得的奖金总额是一随机变量ξ,其所有可能的取值为,0,x,2x,3x.
ξ=0时表示顾客在三次抽奖中都没有获奖,所以P(ξ=0)=()3=,
同理可得P(ξ=x)=()()2=,
P(ξ=2x)=()2()=,P(ξ=3x)=()3=.
于是顾客在三次抽奖中所获得的奖金总额的期望是
Eξ=0×+x·+2x·+3x·=1.5x.
要使促销方案对商场有利,应使顾客获奖奖金数的期望值不大于商场的提价数额,因此应有1.5x≤90,所以x≤60,故商场应将中奖奖金数额最高定为60元,才能使促销方案对自己有利.
考点:古典概型概率的计算,互斥(对立)事件的概率计算,数学期望的应用。
点评:中档题,本题综合性较强,综合考查古典概型概率的计算,互斥(对立)事件的概率计算,数学期望的应用,及利用数学知识解决实际问题的能力。求出顾客在三次抽奖中所获得的奖金总额的期望值,与商场的提价数额比较,即可求得结论。
有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响。
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
所用的时间(天数) | 10 | 11 | 12 | 13 |
通过公路1的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
(1)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(2)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其它费用忽略不计),此项费用由生产商承担。如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天销售商将少支付给生产商2万元。如果汽车A、B长期按(1)所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大。
(注:毛利润=(销售商支付给生产商的费用)—(一次性费用))