题目内容

14.已知数列{an}满足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*).
(1)求证:$({\frac{1}{a_n}})$是等差数列;
(2)比较an与$\frac{1}{4n(n+1)}$的大小关系;
(3)利用(2)证明:a12+a22+…+an2<$\frac{1}{4}$.

分析 (1)由an-1-an=2an•an-1(n≥2,n∈N*),变形为$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}$=2,利用等差数列的通项公式即可得出;
(2)由(1)可得:an=$\frac{1}{2n+1}$.作差an-$\frac{1}{4n(n+1)}$即可比较出大小;
(3)由an=$\frac{1}{2n+1}$,由${a}_{n}^{2}$=$\frac{1}{4{n}^{2}+4n+1}$<$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”、“放缩法”即可证明.

解答 (1)证明:∵an-1-an=2an•an-1(n≥2,n∈N*),
∴$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}$=2,∴$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为3,公差为2;
(2)解:由(1)可得:$\frac{1}{{a}_{n}}$=3+2(n-1)=2n+1,
∴an=$\frac{1}{2n+1}$.
∴an-$\frac{1}{4n(n+1)}$=$\frac{1}{2n+1}$-$\frac{1}{4n(n+1)}$=$\frac{4n(n+1)-(2n+1)}{4n(n+1)(2n+1)}$=$\frac{4{n}^{2}+2n-1}{4n(n+1)(2n+1)}$>0,
∴an>$\frac{1}{4n(n+1)}$.
(3)证明:∵an=$\frac{1}{2n+1}$,∴${a}_{n}^{2}$=$\frac{1}{(2n+1)^{2}}$=$\frac{1}{4{n}^{2}+4n+1}$<$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴a12+a22+…+an2<$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$$<\frac{1}{4}$.
∴a12+a22+…+an2<$\frac{1}{4}$.

点评 本题考查了等差数列的通项公式、递推式的应用、“裂项求和”方法、“放缩法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网