题目内容
【题目】如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2. (Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是 .
【答案】证明:(Ⅰ)∵几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,
∴AD⊥AF,AD⊥AB,
又AF∩AB=A,
∴AD⊥平面ABEF,
又AD平面PAD,
∴平面PAD⊥平面ABFE.
(Ⅱ)解:以A 为原点,AB、AE、AD的正方向为x,y,z轴,建立空间直角坐标系A﹣xyz
设正四棱棱的高为h,AE=AD=2,
则A(0,0,0),F(2,2,0),C(2,0,2),P(1,﹣1,1)
设平面ACF的一个法向量 =(x,y,z),
=(2,2,0), =(2,0,2),
则 ,取x=1,得 =(1,﹣1,﹣1),
设平面ACP的一个法向量 =(a,b,c),
则 ,取b=1,则 =(﹣1,1,1+h),
二面角C﹣AF﹣P的余弦值 ,
∴|cos< >|= = = ,
解得h=1.
【解析】(Ⅰ)推导出AD⊥AF,AD⊥AB,从而AD⊥平面ABEF,由此能证明平面PAD⊥平面ABFE.(Ⅱ)以A 为原点,AB、AE、AD的正方向为x,y,z轴,建立空间直角坐标系A﹣xyz,利用向量法能求出h的值.
练习册系列答案
相关题目