题目内容
【题目】已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为 ,求直线l1的方程.
【答案】见解析
【解析】试题分析:当两条直线的斜率存在时,两条直线平行只需斜率相等截距不等,当两条直线的斜率均不存在时,两条直线平行,当一条直线斜率不存在而另一条直线斜率存在,两条直线不平行;两条平行线间的距离可用两条平行线间的距离公式去求,但使用公式时要化为一般式,且x, y的系数一致.
试题解析:
∵l1∥l2,∴ ,
∴ 或,
(1)当m=4时,直线l1的方程为4x+8y+n=0,
把l2的方程写成4x+8y-2=0,
∴ ,解得n=-22或n=18.
故所求直线的方程为2x+4y-11=0或2x+4y+9=0.
(2)当m=-4时,直线l1的方程为4x-8y-n=0,
l2的方程为2x-4y-1=0,
∴,解得n=-18或n=22.
故所求直线的方程为2x-4y+9=0或2x-4y-11=0.
练习册系列答案
相关题目
【题目】汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表: A型车
出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
B型车
出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.