题目内容
【题目】设命题p:实数满足x2﹣4ax+3a2<0,a≠0;命题q:实数满足 ≥0.
(1)若a=1,p∧q为真命题,求x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
【答案】
(1)解:由x2﹣4ax+3a2<0,a≠0得(x﹣a)(x﹣3a)<0,
若a=1,则p:1<x<3,
若p∧q为真,则p,q同时为真,
即 ,解得2<x<3,
∴实数x的取值范围(2,3)
(2)解:由 ≥0,得 ,解得2<x≤3.
即q:2<x≤3.
若¬p是¬q的充分不必要条件,即q是p的充分不必要条件,
则必有a>0,此时p:a<x<3a,a>0.
则有 ,即 ,
解得1<a≤2
【解析】(1)若a=1,分别求出p,q成立的等价条件,利用p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围.
【题目】二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
售价 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)试求y关于x的回归直线方程;(参考公式: = , =y﹣ )
(2)已知每辆该型号汽车的收购价格为w=0.01x3﹣0.09x2﹣1.45x+17.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?(利润=售价﹣收购价)
【题目】某厂拟生产甲、乙两种适销产品,每件产品甲的销售收入为3千元,每件产品乙的销售收入为4千元.这两种产品都需要在A,B两种不同的设备上加工,按工艺规定,一件产品甲和一件产品乙在各设备上需要加工工时如表所示:
设备 | A | B |
甲 | 2h | 1h |
乙 | 2h | 2h |
已知A,B两种设备每月有效使用台时数分别为400h、300h(一台设备工作一小时称为一台时).分别用x,y表示计划每月生产甲、乙产品的件数.
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问每月分别生产甲、乙两种产品各多少件,可使每月的收入最大?并求出此最大收入.