ÌâÄ¿ÄÚÈÝ

15£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£¬ÈôÖ±Ïßl1¹ýÔ­µã£¬Ö±Ïßl2ÓëÖ±Ïßl1ÏཻÓÚµãP£¬Ø­$\overrightarrow{OP}$Ø­=1£¬ÇÒl1¡Íl2£¬Ö±Ïßl2ÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬ÎÊÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïßl2£¬Ê¹$\overrightarrow{AP•}\overrightarrow{PB}$=1³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öÖ±Ïßl2µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö ·ÖÀàÌÖÂÛ£¬¸ù¾Ý$\overrightarrow{AP•}\overrightarrow{PB}$=1£¬Ø­$\overrightarrow{OP}$Ø­=1½øÐÐת»¯£¬½«Ö±Ïßl2µÄ·½³ÌΪmx+ny=1´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃx1x2+y1y2=0£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º¼ÙÉè´æÔÚÖ±Ïßl2£¬Ê¹$\overrightarrow{AP•}\overrightarrow{PB}$=1³ÉÁ¢£®
ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬Q£¨m£¬n£©£¬ÇÒm2+n2=1£¬
ÔòÖ±Ïßl1µÄ·½³ÌΪnx-my=0£¬Ö±Ïßl2µÄ·½³ÌΪmx+ny=1£®
£¨1£©µ±n=0ʱ£¬´ËʱֱÏßl2µÄ·½³ÌΪx=¡À1£¬¿ÉµÃA£¨1£¬$\frac{\sqrt{14}}{2}$£©£¬B£¨1£¬-$\frac{\sqrt{14}}{2}$£©£¬
´úÈë$\overrightarrow{AP•}\overrightarrow{PB}$¡Ù1£¬²»·ûÌâÒ⣻  ¡­£¨5·Ö£©
£¨2£©µ±n¡Ù0ʱ£¬½«Ö±Ïßl2µÄ·½³ÌΪmx+ny=1ÓëÍÖÔ²·½³Ì$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1ÁªÁ¢£¬
ÓÖm2+n2=1£¬µÃ £¨1+m2£©x2-4mx+2-8n2=0£®¡­£¨6·Ö£©
¡àx1+x2=$\frac{4m}{1+{m}^{2}}$£¬x1x2=$\frac{2-8{n}^{2}}{1+{m}^{2}}$£®  ¡­£¨7·Ö£©
ÓÖ¡ß$\overrightarrow{AP•}\overrightarrow{PB}$=1£¬
¡àx1x2+y1y2+2=m£¨x1+x2£©+n£¨y1+y2£©£®
ÓÖ mx1+ny1=1£¬mx2+ny2=1
¡àm£¨x1+x2£©+n£¨y1+y2£©=2£®
¡àx1x2+y1y2=0£®    ¡­£¨9·Ö£©
¡àn2x1x2+1+m2x1x2-m£¨x1+x2£©=0£®
¡àx1x2+1-m£¨x1+x2£©=0£®   ¡­£¨11·Ö£©
¡à-5n2=0£®
¡àn=0ÕâÓën¡Ù0ì¶Ü£®   ¡­£¨12·Ö£©
×ÛÉÏ¿ÉÖª£¬²»´æÔÚÕâÑùµÄÖ±Ïßl2£¬Ê¹$\overrightarrow{AP•}\overrightarrow{PB}$=1³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø