题目内容
【题目】已知是坐标原点,椭圆的焦距为,左、右焦点分别为,,点在椭圆上,若的面积最大时.
(1)求椭圆的标准方程;
(2)直线与椭圆在第一象限交于点,点是第四象限的点且在椭圆上,线段被直线垂直平分,直线与椭圆交于另一点,求证:.
【答案】(1)(2)证明见解析
【解析】
(1)确定是椭圆的上顶点或下顶点时的面积最大,则有,即,再根据求解.
(2)依题意,点的坐标为,直线不与轴垂直,设直线,即,设,.由,得.由韦达定理,用k表示,再根据,得到,进而求得,证明.
(1)当是椭圆的上顶点或下顶点时的面积最大,
设是椭圆的上顶点,
则,即.
又,,
,,.
椭圆的标准方程为.
(2)证明:依题意,点的坐标为,
直线不与轴垂直,设直线,
即,直线,即.
设,.
由,
得.
,.
则.
又,,
.
又,.
.
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工的月工资均在(百元)内,且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:
(1)求的值;
(2)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名.
①完成如下所示列联表
技术工 | 非技术工 | 总计 | |
月工资不高于平均数 | |||
月工资高于平均数 | |||
总计 |
②则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:,其中.
【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:
维修次数 | 0 | 1 | 2 | 3 |
台数 | 5 | 10 | 20 | 15 |
以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。
(1)求X的分布列;
(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?