题目内容
4.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的回归系数$\stackrel{∧}{b}$与$\stackrel{∧}{a}$
(2)估计使用年限为10年时,维修费用是多少?(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)
分析 (1)根据所给的数据,做出变量x,y的平均数,根据最小二乘法做出线性回归方程的系数b,在根据样本中心点一定在线性回归直线上,求出a的值.
(2)根据第一问做出的a,b的值,写出线性回归方程,当自变量为10时,代入线性回归方程,求出维修费用,这是一个预报值.
解答 解:(1)由题意知$\overline{x}$=4,$\overline{y}$=5,
b=$\frac{\sum _{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum _{i=1}^{n}{({x}_{i}-\overline{x})}^{2}}$=$\frac{5.6+1.2+0+1.5+4}{4+1+0+1+4}$=1.23,
a=$\overline{y}$-b$\overline{x}$=5-4×1.23=0.08,
∴$\widehat{y}$=1.23x+0.08,
(2)根据第一问知线性回归方程是$\widehat{y}$=1.23x+0.08,
当自变量x=10时,预报维修费用是$\widehat{y}$=1.23×10+0.08=12.38,
即当使用年限为10年时,维修费用约为12.38万元.
点评 本题考查线性回归方程,考查最小二乘法,考查预报值的求法,是一个新课标中出现的新知识点,已经在广东的高考卷中出现过类似的题目.
练习册系列答案
相关题目
14.设函数f(x)=(x-1)ex-1,则( )
A. | x=2为f(x)的极大值点 | B. | x=2为f(x)的极小值点 | ||
C. | x=0为f(x)的极小值点 | D. | x=0为f(x)的极大值点 |
12.已知第24届至第28届奥运会转播费收入的相关数据(取整处理)如表所示:
利用最小二乘法求的线性回归方程$\stackrel{∧}{y}$=2.9x-66.
(1)根据此回归方程预报第29届北京奥运会转播费收入;据查北京奥运会转播费实际收入为17.2亿美元,请解释预报值与实际值之间产生差异的原因;
(2)利用该回归方程已求的第24届至第28届转播费收入的预报值分别为3.6,6.5,9.4,12.3,15.2,问届数能在多大程度上解释了转播收入的变化.
参考数据:0.42+0.52+0.42+0.72+0.2=1.1;
5.42+3.42+042+3.62+5.62=85.2.
届数x | 24 | 25 | 26 | 27 | 28 |
收入y(单位:亿美元) | 4 | 6 | 9 | 13 | 15 |
(1)根据此回归方程预报第29届北京奥运会转播费收入;据查北京奥运会转播费实际收入为17.2亿美元,请解释预报值与实际值之间产生差异的原因;
(2)利用该回归方程已求的第24届至第28届转播费收入的预报值分别为3.6,6.5,9.4,12.3,15.2,问届数能在多大程度上解释了转播收入的变化.
参考数据:0.42+0.52+0.42+0.72+0.2=1.1;
5.42+3.42+042+3.62+5.62=85.2.
19.已知△ABC为边长为4的正三角形,采用斜二测画法得到其直观图的面积为( )
A. | 4 | B. | 2$\sqrt{6}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{6}$ |
13.下列命题正确的是( )
A. | 若直线l上有无数个点不在平面α内,则l∥α | |
B. | 若直线l与平面α有两个公共点,则直线l在平面内 | |
C. | 若直线l与平面α相交,则l与平面α内的任意直线都是异面直线 | |
D. | 若直线l上有两个点到平面α的距离相等,则l∥α |
14.设等比数列{an}中,a1=1,公比q≠1,若ak=a1a2…a10,则k=( )
A. | 60 | B. | 55 | C. | 46 | D. | 45 |