题目内容
14.设等比数列{an}中,a1=1,公比q≠1,若ak=a1a2…a10,则k=( )A. | 60 | B. | 55 | C. | 46 | D. | 45 |
分析 根据等比数列的通项公式,可得ak=qk-1=a1•a2•a3•…•a10=q1+2+…+9,根据指数方程,进而求出k值.
解答 解:∵数列{an}为等比数列,且首项a1=1,公比q≠1,
∴ak=qk-1=a1•a2•a3•…•a10=q1+2+…+19,
∴k-1=1+2+…+9=$\frac{1+9}{2}×9$=45,
故k=46
故选:A
点评 本题考查的知识点是等比数列的性质,其中根据等比数列的通项公式结合指数方程是解答本题的关键.
练习册系列答案
相关题目
4.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
若由资料知y对x成线性相关关系、试求:
(1)线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的回归系数$\stackrel{∧}{b}$与$\stackrel{∧}{a}$
(2)估计使用年限为10年时,维修费用是多少?(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的回归系数$\stackrel{∧}{b}$与$\stackrel{∧}{a}$
(2)估计使用年限为10年时,维修费用是多少?(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)
5.设i是虚数单位,若$\frac{z}{2-i}$=1+i,则复数z=( )
A. | 2+i | B. | 1+i | C. | 3+i | D. | 3=i |
6.已知数列{an}中,a1=1,a2=1,an+2=an+an+1,则a5=( )
A. | 0 | B. | 3 | C. | 5 | D. | 8 |
4.下列事件是随机事件的是( )
(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引
(3)在标准大气压下,水在1℃时结冰 (4)任意掷一枚骰子朝上的点数是偶数.
(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引
(3)在标准大气压下,水在1℃时结冰 (4)任意掷一枚骰子朝上的点数是偶数.
A. | (1)(2) | B. | (2)(3) | C. | (3)(4) | D. | (1)(4) |