题目内容
【题目】平面内有向量 =(1,7), =(5,1), =(2,1),点X为直线OP上的一个动点.
(1)当 取最小值时,求 的坐标;
(2)当点X满足(1)的条件和结论时,求cos∠AXB的值.
【答案】
(1)解:设 =(x,y),
∵点X在直线OP上,∴向量 与 共线.
又 =(2,1),∴x﹣2y=0,即x=2y.
∴ =(2y,y).又 = ﹣ , =(1,7),
∴ =(1﹣2y,7﹣y).
同样 = ﹣ =(5﹣2y,1﹣y).
于是 =(1﹣2y)(5﹣2y)+(7﹣y)(1﹣y)=5y2﹣20y+12=5(y﹣2)2﹣8.
∴当y=2时, 有最小值﹣8,此时 =(4,2)
(2)解:当 =(4,2),即y=2时,有 =(﹣3,5), =(1,﹣1).
∴| |= ,| |= .
∴cos∠AXB= =﹣
【解析】(1)因为点X在直线OP上,向量 与 共线,可以得到关于 坐标的一个关系式,再根据 的最小值,求得 的坐标,(2)cos∠AXB是 与 夹角的余弦,利用数量积的知识易解决.
练习册系列答案
相关题目