题目内容
【题目】有限个元素组成的集合,,记集合中的元素个数为,即.定义,集合中的元素个数记为,当时,称集合具有性质.
(1),,判断集合,是否具有性质,并说明理由;
(2)设集合,且(),若集合具有性质,求的最大值;
(3)设集合,其中数列为等比数列,()且公比为有理数,判断集合是否具有性质并说明理由.
【答案】(1)集合不具有性质,集合具有性质,理由见解析.(2).(3)集合具有性质,理由见解析.
【解析】
(1)根据定义即可判断,进而得出答案.
(2)运用反证法即可得出答案.
(3)设,假设当时有成立,进而结合反证法证明假设不成立,进而得出答案.
(1)集合不具有性质,集合具有性质.
,不具有性质;
,具有性质.
(2)若三个数,,成等差数列,则不具有性质,理由是.
因为且()所以,
要使取最大,则;
,易知不具有性质,要使取最大,
则;
,要使取最大,检验可得;
(3)集合具有性质.
设等比数列的公比为为,所以()且为有理数,
假设当时有成立,则有
因为为有理数,设(,)且(,互质),因此有
即(1),
(1)式左边是的倍数,右边是的倍数,又,互质,
显然不成立.
所以,所以集合具有性质.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一年度未发生有责任道路交通事故 | 下浮10% | |
上两年度未发生有责任道路交通事故 | 下浮 | |
上三年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮10% | |
上一个年度发生有责任交通死亡事故 | 上浮30% | |
某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了
类型 | A1 | A2 | A3 | A4 | A5 | A6 |
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.