题目内容

【题目】如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.

(1)求出y关于x的函数解析式及x的取值范围;

(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.

【答案】1 ;(2)当20米时,最小.的最小值为96000元.

【解析】

试题(1)由题意,已知了整个矩形场地的面积,又设了宽ABx米,所以其长就应为米,从而围墙的长度就为:()米,从而修建总费用元,只是注意求函数的解析式一定要指出函数的定义域,此题中不仅要而且还要注意题目中的隐含条件:中间用围墙隔开,使得为矩形,为正方形从而可知矩形ABCD的长应当要大于其宽x,所以x还应满足:;(2)由(1)知所以可用基本不等式来求y的最小值,及对应的x的值;最后应用问题一定要注意将数学解得的结果还原成实际问题的结果.

试题解析:(1)设米,则由题意得,且2

,可得4

(说明:若缺少2分)

6

所以关于的函数解析式为 7

210

当且仅当,即时等号成立. 12

故当20米时,最小.的最小值为96000元. 14

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网