题目内容
【题目】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分。已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响。各轮结果亦互不影响。假设“星队”参加两轮活动,求:
(Ⅰ)“星队”至少猜对3个成语的概率;
(Ⅱ)“星队”两轮得分之和为X的分布列和数学期望EX.
【答案】(Ⅰ)(Ⅱ)分布列见解析,
【解析】
试题分析:(Ⅰ)找出“星队”至少猜对3个成语所包含的基本事件,由独立事件的概率公式和互斥事件的概率加法公式求解;(Ⅱ)由题意,随机变量的可能取值为0,1,2,3,4,6.由事件的独立性与互斥性,得到的分布列,根据期望公式求解.
试题解析:
(Ⅰ)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,
记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,
记事件E:“‘星队’至少猜对3个成语”.
由题意,
由事件的独立性与互斥性,
,
所以“星队”至少猜对3个成语的概率为.
(Ⅱ)由题意,随机变量的可能取值为0,1,2,3,4,6.
由事件的独立性与互斥性,得
,
,
,
,
,
.
可得随机变量的分布列为
0 | 1 | 2 | 3 | <>4 | 6 | |
P |
所以数学期望.
练习册系列答案
相关题目