题目内容
【题目】如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).
【答案】当为时,工厂产生的噪声对居民的影响最小。
【解析】
试题分析:根据题意,设,则,在中,根据正弦定理得:,整理得:,那么在中,由余弦定理得:,又因为,所以代入上式得:,从而得到关于变量的函数关系式,最后通过化简整理得到关于的正弦型函数,再求的最大值,从而求出的最大值。本题考查解三角形的实际应用,主要是研究图形,利用题中的已知条件,将正弦、余弦定理应用在解题中。考查学生对知识的综合运用能力。
试题解析:设,在中,.
因为,所以.
在中,.
当且仅当,即时,取得最大值12,即取得最大值.
答:设为时,工厂产生的噪声对居民的影响最小.
练习册系列答案
相关题目