题目内容
【题目】已知函数f(x)=2sin cos ﹣2 sin2 +
(1)求函数f(x)的单调减区间
(2)已知α∈( , ),且f(α)= ,求f( )的值.
【答案】
(1)解:化简可得f(x)=2sin cos ﹣2 sin2 +
=sinx+ cosx=2sin(x+ ),
由2kπ+ ≤x+ ≤2kπ+ 可得2kπ+ ≤x≤2kπ+ ,
∴函数f(x)的单调减区间为:[2kπ+ ,2kπ+ ](k∈Z)
(2)解:∵α∈( , ),且f(α)=2sin(α+ )= ,
∴sin(α+ )= ,∴cos(α+ )=﹣
∴f( )=2sin(α﹣ + )=2sin(α+ ﹣ )
=2sin(α+ )cos ﹣2cos(α+ )sin
=2× ﹣2× =
【解析】(1)化简可得f(x)=2sin(x+ ),解不等式2kπ+ ≤x+ ≤2kπ+ 可得单调减区间;(2)由题意易得sin(α+ )= ,∴cos(α+ )=﹣ ,而f( )=2sin(α+ )cos ﹣2cos(α+ )sin ,代值计算可得.
【考点精析】关于本题考查的两角和与差的正弦公式,需要了解两角和与差的正弦公式:才能得出正确答案.
练习册系列答案
相关题目