题目内容

【题目】设函数f(x)= x3+ax2﹣8x﹣1(a<0).若曲线y=f(x)的切线斜率的最小值是﹣9.求:
(1)a的值;
(2)函数f(x)的极值.

【答案】
(1)解:∵f(x)= x3+ax2﹣8x﹣1,

∴f′(x)=x2+2ax﹣8.

∴当x=﹣a时,f′(x)有最小值﹣a2﹣8

由已知:﹣a2﹣8=﹣9,∴a2=1

∵a<0,∴a=﹣1


(2)解:由(1)f′(x)=x2﹣2x﹣8

令f′(x)=0得x=﹣2或4

当x变化时,f′(x)及f(x)的变化情况如下表:

x

(﹣∞,﹣2)

﹣2

(﹣2,4)

4

(4,+∞)

f′(x)

+

0

0

+

f(x)

极大值

极小值

∴当x=﹣2时,f(x)取得极大值,极大值为f(﹣2)=

当x=4时,f(x)取得极小值,极小值为f(4)=﹣


【解析】(1)先求出导函数的最小值,利用曲线y=f(x)的切线斜率的最小值是﹣9,求出a的值即可;(2)先求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,确定函数的单调区间可得函数f(x)的极大值和极小值.
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网