题目内容
【题目】如图,在四棱锥中,,,,,O为的中点.
(1)证明:平面;
(2)若,,,求二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)取的中点F,连接,易得,,由线面垂直判定定理可得平面,进而,再将与线面垂直判定定理相结合即可得结果.
(2)建立如图所示的空间直角坐标系,可求出平面的一个法向量,取平面的一个法向量,根据图象结合即可得结果.
(1)证明:取的中点F,连接.
因为,F为的中点,所以.
因为O为中点,F为的中点,所以.
因为,所以,
因为,平面,平面,所以平面.
又平面,所以.
因为,O为的中点,所以.
因为,平面,平面,
所以平面.
(2)解:以O为坐标原点,所在直线为x轴,平行的直线为y轴,所在直线为z轴建立如图所示的空间直角坐标系,∵,
∴,∴,
则,,,,,
因为,所以,
故,.
设平面的法向量,则
不妨取,则
平面的一个法向量,记二面角的大小为,
由图可知为锐角,则.
【题目】自贡农科所实地考察,研究发现某贫困村适合种植,两种药材,可以通过种植这两种药材脱贫.通过大量考察研究得到如下统计数据:药材的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
单价(元/公斤) | 18 | 20 | 23 | 25 | 29 |
药材的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:
(1)若药材的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计2020年药材的单价;
(2)用上述频率分布直方图估计药材的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材还是药材?并说明理由.
参考公式:,(回归方程中)
【题目】是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某时间段车流量与浓度的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量(万辆) | 50 | 51 | 54 | 57 | 58 |
的浓度(微克/立方米) | 39 | 40 | 42 | 44 | 45 |
(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标;
(2)用最小二乘法求出关于的线性回归方程;
(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时的浓度是多少?
(参考公式:,)