题目内容
【题目】一个盒子中有5只同型号的灯泡,其中有3只一等品,2只二等品,现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:
(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;
(Ⅱ)求至少有一次取到二等品的概率.
【答案】(Ⅰ);(Ⅱ)
.
【解析】
列举出所有的基本事件,共有20个, (I)从中查出第一次取到二等品,且第二次取到的是一等品的基本事件数共有6个,利用古典概型的概率公式可得结果;(II)事件“至少有一次取到二等品”的对立事件是“取到的全是一等品”,“取到的全是一等品”包括了6个事件,“至少有一次取到二等品”取法有14种, 利用古典概型的概率公式可得结果.
(I)令3只一等品灯泡分别为;2只二等品灯泡分别为
.
从中取出只灯泡,所有的取法有20种,分别为:
,,
,
,
,
,
,
,
,
,
,
第一次取到二等品,且第二次取到的是一等品取法有6种,
分别为,故概率是
;
(II)事件“至少有一次取到二等品”的对立事件是“取到的全是一等品”,
“取到的全是一等品”包括了6种分别为,
故“至少有一次取到二等品”取法有14种,事件“至少有一次取到二等品”的概率是.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目