题目内容
11.已知集合A={(x,y)|x2-y2-y=4},B={(x,y)|x2-xy-2y2=0},C={(x,y)|x-2y=0},D={(x,y)|x+y=0}(1)判断集合B、C、D之间的关系;
(2)求A∩B.
分析 (1)根据关于B、C、D的表达式,从而求出B、C、D的关系;(2)由题意得到方程组解出即可.
解答 解:(1)∵B={(x,y)|x2-xy-2y2=0}={(x,y)|(x-2y)(x+y)=0},
而C={(x,y)|x-2y=0},D={(x,y)|x+y=0},
∴集合C和集合D是集合B的子集;
(2)∵B={(x,y)|x2-xy-2y2=0}={(x,y)|(x-2y)(x+y)=0},
∴B={(x,y)|x=2y或x=-y},
当x=2y时,得$\left\{\begin{array}{l}{x=2y}\\{{x}^{2}{-y}^{2}-y=4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{8}{3}}\\{y=\frac{4}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$,
当x=-y时,得$\left\{\begin{array}{l}{x=-y}\\{{x}^{2}{-y}^{2}-y=4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=4}\\{y=-4}\end{array}\right.$,
∴A∩B={($\frac{8}{3}$,$\frac{4}{3}$),(-2,-1),(4,-4)}.
点评 本题考查了集合之间的关系,考查集合的运算,是一道基础题.
练习册系列答案
相关题目