题目内容
【题目】如图,在三棱锥中,,底面ABC.M,N分别为PB,PC的中点.
(1)求证:平面ABC;
(2)求证:平面平面PAC;
(3)若,求三棱锥的体积.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
(1)由题意可得,再利用线面平行的判定定理即可证出.
(2)由线面垂直的性质定理可得,再由,利用线面垂直的判定定理可得平面PAC,再由面面垂直的判定定理即可证出.
(3)利用等体法:
证明:(1)M,N分别为PB,PC的中点,
所以,平面ABC,
平面ABC,所以平面ABC;
(2)底面ABC,平面ABC,所以,
因为,所以,又,
所以平面PAC,平面ABC,所以平面平面PAC;
(3)由(2)知,,平面PAC,所以平面PAC,
,
在三角形PAC中,,,
,
所以.
练习册系列答案
相关题目
【题目】某校初一年级全年级共有名学生,为了拓展学生的知识面,在放寒假时要求学生在假期期间进行广泛的阅读,开学后老师对全年级学生的阅读量进行了问卷调查,得到了如图所示的频率分布直方图(部分已被损毁),统计人员记得根据频率直方图计算出学生的平均阅读量为万字.根据阅读量分组按分层抽样的方法从全年级人中抽出人来作进一步调查.
(1)在阅读量为万到万字的同学中有人的成绩优秀,在阅量为万到万字的同学中有人成绩不优秀,请完成下面的列联表,并判断在“犯错误概率不超过”的前提下,能否认为“学生成绩优秀与阅读量有相关关系”;
阅读量为万到万人数 | 阅读量为万到万人数 | 合计 | |
成绩优秀的人数 | |||
成绩不优秀的人数 | |||
合计 |
(2)在抽出的同学中,1)求抽到被污染部分的同学人数;2)从阅读量在万到万字及万到万字的同学中选出人写出阅读的心得体会.求这人中恰有人来自阅读量是万到万的概率.
参考公式: ,其中.
参考数据: