题目内容
【题目】经观测,某昆虫的产卵数y与温度x有关,现将收集到的温度xi和产卵数yi(i=1,2,…,10)的10组观测数据作了初步处理,得到如下图的散点图及一些统计量表.
表中 ,
(1)根据散点图判断, , 与 哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据.
①试求y关于x回归方程;
②已知用人工培养该昆虫的成本h(x)与温度x和产卵数y的关系为h(x)=x(lny﹣2.4)+170,当温度x(x取整数)为何值时,培养成本的预报值最小?
附:对于一组数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=,α=﹣β.
【答案】(1);(2)见解析.
【解析】分析:(1)根据散点图判断,看出样本点分布在一条指数函数的周围,可得结论;
(2)①由变换后的样本点分布在一条直线附近,因此可以用线性回归方程来拟合,即可求出y对x的回归方程;
②代入转化为二次函数的最值问题,结合二次函数的图象与性质可得结论.
详解:(1)根据散点图判断,看出样本点分布在一条指数函数的周围,所以适宜作为y与x之间的回归方程模型;
(2)① 令z=lny ,
②
时,培养成本的预报值最小.
【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:
阅读时间 | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,120] |
人数 | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图:
(1)根据已知条件完成2x2列联表;
男生 | 女生 | 总计 | |
阅读达人 | |||
非阅读达人 | |||
总计 |
(2)并判断是否有的把握认为“阅读达人”跟性别有关?
附:参考公式
【题目】禽流感一直在威胁我们的生活,某疾病控制中心为了研究禽流感病毒繁殖个数(个)随时间(天)变化的规律,收集数据如下:
天数 | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖个数 | 6 | 12 | 25 | 49 | 95 | 190 |
作出散点图可看出样本点分布在一条指数型函数的周围.
保留小数点后两位数的参考数据:
,,,,,,,,其中
(1)求出关于的回归方程(保留小数点后两位数字);
(2)已知,估算第四天的残差.
参考公式: