题目内容
已知函数
在
处取得极值.
(Ⅰ)求函数
的单调区间;
(Ⅱ)求证:
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423645495.gif)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423536698.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423583226.gif)
(Ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423614264.gif)
(Ⅱ)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423614450.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423645495.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423661693.gif)
(1)函数
的单调增区间为
,
,单调减区间为
.
(2)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423614264.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423833318.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423848472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423895323.gif)
(2)见解析
(Ⅰ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423895690.gif)
由
得
…………………………4分
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231334240821226.gif)
故函数
的单调增区间为
,
,单调减区间为
.
……………………………………8分
(Ⅱ)由(Ⅰ)
在
递增,在
递减,
递增,在
时取极大值![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424644241.gif)
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424659279.gif)
. ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424644241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424737135.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424675340.gif)
∴在
上,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424800289.gif)
.
又
故
(当且仅当
时取等号).
即
的最小值为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424956128.gif)
,
.……………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423895690.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423911328.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423926459.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423942302.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423973779.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424067287.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231334240821226.gif)
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | 0 | ![]() |
![]() | ![]() | 极大值 | ![]() | 极小值 | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423614264.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423833318.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423848472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423895323.gif)
……………………………………8分
(Ⅱ)由(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423614264.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423833318.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423895323.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424613317.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423583226.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424644241.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424659279.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424675340.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424644241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424737135.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424675340.gif)
∴在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424784262.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424800289.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424644241.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424831491.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424847684.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424862245.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424878541.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424909202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424925183.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424940309.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133424956128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423614450.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133423661693.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目