题目内容
【题目】定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2
(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;
(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.
【答案】(1)见解析;
(2)[﹣,﹣].
【解析】
试题(1)当a=﹣1时,函数表达式为f(x)=1+x﹣x2,可得f(x)在(﹣∞,0)上是单调增函数,它的值域为(﹣∞,1),从而|f(x)|的取值范围是[0,+∞),因此不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.
(2)函数f(x)在x∈[1,4]上是以3为上界的有界函数,即﹣3≤f(x)≤3在[1,4]上恒成立,代入函数表达式并化简整理,得﹣﹣≤a≤﹣在[1,4]上恒成立,接下来利用换元法结合二次函数在闭区间上最值的求法,得到(﹣﹣)max=﹣,(﹣)min=﹣,所以,实数a的取值范围是[﹣,﹣].
解:(1)当a=﹣1时,函数f(x)=1+x﹣x2=﹣(x﹣)2+
∴f(x)在(﹣∞,0)上是单调增函数,f(x)<f(0)=1
∴f(x)在(﹣∞,0)上的值域为(﹣∞,1)
因此|f(x)|的取值范围是[0,+∞)
∴不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.
(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,
则|f(x)|≤3在[1,4]上恒成立,即﹣3≤f(x)≤3
∴﹣3≤ax2+x+1≤3
∴≤a≤,即﹣﹣≤a≤﹣在[1,4]上恒成立,
∴(﹣﹣)max≤a≤(﹣)min,
令t=,则t∈[,1]
设g(t)=﹣4t2﹣t=﹣4(t+)2+,则当t=时,g(t)的最大值为﹣
再设h(t)=2t2﹣t=2(t﹣)2﹣,则当t=时,h(t)的最小值为﹣
∴(﹣﹣)max=﹣,(﹣)min=﹣
所以,实数a的取值范围是[﹣,﹣].