题目内容
【题目】设椭圆过点,离心率为.
(1)求椭圆的方程;
(2)求过点且斜率为的直线被椭圆所截线段的中点坐标.
【答案】(1) ;(2) .
【解析】试题分析:(1)由题意可知: ,根据椭圆离心率公式即可求得b的值,求得椭圆方程;(2)由点斜式方程求得直线AB方程,代入椭圆方程,求得A和B点坐标,利用中点坐标公式,即可求得AB的中点坐标.
试题解析:
(Ⅰ)根据题意,椭圆过点(0,4),
将(0,4)代入C的方程得,即b=4
又得=;
即,∴a=5
∴C的方程为
(Ⅱ)过点(3,0)且斜率为的直线方程为,
设直线与C的交点为A(x1,y1),B(x2,y2),
将直线方程代入C的方程,得,
即x2﹣3x﹣8=0,解得,,
∴AB的中点坐标,
,
即中点为.
练习册系列答案
相关题目