ÌâÄ¿ÄÚÈÝ
7£®2014ÄêÊÀ½ç¾¼ÃÐÎÊÆÑϾþ£¬Ä³ÆóҵΪÁËÔöÇ¿×ÔÉí¾ºÕùÁ¦£¬¼Æ»®¶ÔÖ°¹¤½øÐм¼ÊõÅàѵ£¬ÒÔÌá¸ß²úÆ·µÄÖÊÁ¿£®ÎªÁ˽âij³µ¼ä¶Ô¼¼ÊõÅàѵµÄ̬¶ÈÓëÐÔ±ðµÄ¹Øϵ£¬¶Ô¸Ã³µ¼äËùÓÐÖ°¹¤½øÐÐÁËÎʾíµ÷²éµÃµ½ÁËÈçϵÄ2¡Á2ÁÐÁª±í£ºÔÞ³É | ²»ÔÞ³É | ºÏ¼Æ | |
ÄÐÖ°¹¤ | 22 | 8 | 30 |
Ůְ¹¤ | 8 | 12 | 20 |
ºÏ¼Æ | 30 | 20 | 50 |
£¨2£©ÔÚÉÏÊö³éÈ¡µÄ5ÈËÖÐÑ¡2ÈË£¬ÇóÖÁÉÙÓÐÒ»ÃûÄÐÖ°¹¤µÄ¸ÅÂÊ£»
£¨3£©¾Ý´Ë×ÊÁÏ£¬Åж϶Լ¼ÊõÅàѵµÄ̬¶ÈÊÇ·ñÓëÐÔ±ðÓйأ¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
¸½£ºK2=$\frac{n£¨ad-bc£©2}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬
P£¨K2¡Ýk£© | 0.05 | 0.01 |
k | 3.841 | 6.635 |
·ÖÎö £¨1£©¸ù¾Ý·Ö²ã³éÑùµÄ¶¨Ò彨Á¢±ÈÀý¹Øϵ¼´¿ÉµÃµ½½áÂÛ£®
£¨2£©ÀûÓÃÁоٷ¨¼´¿ÉÇóÖÁÉÙÓÐÒ»ÃûÄÐÖ°¹¤µÄ¸ÅÂÊ£»
£¨3£©¼ÆËãK2£¬½áºÏ¶ÀÁ¢ÐÔ¼ìÑé½øÐÐÅжϣ®
½â´ð ½â£º£¨1£©ÔÚ²»Ô޳ɵÄÖ°¹¤Öгé5ÈË£¬Ôò³éÈ¡±ÈÀýΪ$\frac{5}{20}$=$\frac{1}{4}$£¬
ËùÒÔÄÐÖ°¹¤Ó¦¸Ã³éÈ¡8¡Á$\frac{1}{4}$=2£¨ÈË£©£¬Å®Ö°¹¤Ó¦¸Ã³éÈ¡12¡Á$\frac{1}{4}$=3£¨ÈË£©£®
£¨2£©ÉÏÊö³éÈ¡µÄ5ÈËÖУ¬ÄÐÖ°¹¤2È˼ÇΪa£¬b£¬Å®Ö°¹¤4È˼ÇΪc£¬d£¬e£¬Ôò´Ó5ÈËÖÐÑ¡2È˵ÄËùÓÐÇé¿öΪ£¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨a£¬e£©£¬£¨b£¬c£©£¬£¨b£¬d£©£¬£¨b£¬e£©£¬£¨c£¬d£©£¬£¨c£¬e£©£¬£¨d£¬e£©£¬¹²10ÖÖÇé¿ö£®
»ùÖÐÖÁÉÙÓÐÒ»ÃûÄÐÖ°¹¤µÄÇé¿öÓУ¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨a£¬e£©£¬£¨b£¬c£©£¬£¨b£¬d£©£¬£¨b£¬e£©£¬¹²7ÖÖÇé¿ö£®
¹Ê´ÓÉÏÊö³éÈ¡µÄ5ÈËÖÐÑ¡2ÈË£¬ÖÁÉÙÓÐÒ»ÃûÄÐÖ°¹¤µÄ¸ÅÂÊΪP=$\frac{7}{10}$£®
£¨3£©ÒòΪK2=$\frac{50¡Á£¨22¡Á12-8¡Á8£©2}{30¡Á20¡Á30¡Á20}$¡Ö5.56¡Ê£¨3.841£¬6.635£©£¬
ËùÒÔÓÐ95%µÄ°ÑÎÕÈÏΪ¡°¶Ô¼¼ÊõÅàѵµÄ̬¶ÈÓëÐÔ±ðÓйء±£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é×ۺϿ¼²é¶ÀÁ¢ÐÔ¼ìÑ飬·Ö²ã³éÑùÒÔ¼°¸ÅÂʵÄÇó½â£¬¿¼²éѧÉúµÄÔËËãºÍÍÆÀíÄÜÁ¦£®
A£® | [-$\sqrt{2}$£¬$\sqrt{2}$] | B£® | {-$\sqrt{2}$£¬$\sqrt{2}$} | C£® | £¨-$\sqrt{2}$£¬$\sqrt{2}$£© | D£® | [0£¬$\sqrt{2}$] |
A£® | $\frac{4}{3}$ | B£® | 1+$\sqrt{3}$ | C£® | 1 | D£® | $\frac{1+\sqrt{3}}{2}$ |
A£® | $\left\{{x|x=k¦Ð+\frac{¦Ð}{3}£¬k¡Êz}\right\}$ | B£® | $\left\{{x|x=k¦Ð-\frac{¦Ð}{3}£¬k¡Êz}\right\}$ | C£® | $\left\{{x|x=2k¦Ð¡À\frac{¦Ð}{3}£¬k¡Êz}\right\}$ | D£® | $\left\{{x|x=k¦Ð¡À\frac{¦Ð}{3}£¬k¡Êz}\right\}$ |
A£® | 0 | B£® | 1 | C£® | 1-2ln2 | D£® | $\frac{-1+ln2}{2}$ |