题目内容
【题目】假设关于某种设备的使用年限(年)与所支出的维修费用 (万元)有如下统计:
2 | 3 | 4 | 5 | 6 | |
2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, . ,
(1)求, ;
(2)与具有线性相关关系,求出线性回归方程;
(3)估计使用年限为10年时,维修费用约是多少?
【答案】(1) ; (2);
(3)估计使用年限为10年时,维修费用约为12.38万元.
【解析】
(1)由题意, ,故有较强的线性相关关系;根据所给的数据,求出变量x,y的平均数,(2)根据最小二乘法做出线性回归方程的系数b,再根据样本中心点一定在线性回归方程上,求出a的值,写出线性回归方程;
(3)当自变量为10时,代入线性回归方程,求出维修费用,这是一个预报值.
(1)
(2)
故线性回归方程为
(3)当x=10时, =1.23×10+0.08=12.38(万元),
即估计使用年限为10年时,维修费用约为12.38万元.
练习册系列答案
相关题目
【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在岁到岁的人群中随机调查了人,并得到如图所示的频率分布直方图,在这人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如图所示:
年龄 | 不支持“延迟退休年龄政策”的人数 |
(1)由频率分布直方图,估计这人年龄的平均数;
(2)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
45岁以下 | 45岁以上 | 总计 | |
不支持 | |||
支持 | |||
总计 |
附:
参考数据: