ÌâÄ¿ÄÚÈÝ
16£®ÎªÁ˽âÎÒÊдóѧÉúµÄÌåÖÊ×´¿ö£¬¶ÔÀ¥Ã÷µØÇø²¿·Ö´óѧµÄѧÉú½øÐÐÁËÉí¸ß¡¢ÌåÖغͷλîÁ¿µÄ³éÑùµ÷²é£®ÏÖËæ»ú³éÈ¡100ÃûѧÉú£¬²âµÃÆäÉí¸ßÇé¿öÈç±íËùʾ£®·Ö×é | ƵÊý | ƵÂÊ |
[160£¬165£© | ¢Ù | 0.050 |
[165£¬170£© | 20 | 0.200 |
[170£¬175£© | ¢Ú | ¢Û |
[175£¬180£© | 30 | 0.300 |
[180£¬185] | 10 | 0.100 |
ºÏ ¼Æ | 100 | 1.000 |
£¨¢ò£©Èô°´Éí¸ß·Ö²ã³éÑù£¬³éÈ¡20È˲μÓ2015ÄêÇìÔªµ©È«Ãñ½¡ÉíÔ˶¯£¬ÆäÖÐÓÐ3ÃûѧÉú²Î¼ÓÔ½Ò°±ÈÈü£¬¼ÇÕâ3ÃûѧÉúÖС°Éí¸ßµÍÓÚ170cm¡±µÄÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
·ÖÎö £¨¢ñ£©ÓÉƵÂÊÇóµÃ[160£¬165£©ÄÚµÄƵÊý£¬×÷²îÇó³ö[170£¬175£©ÄÚµÄƵÊý£¬Ôò[170£¬175£©ÄÚµÄƵÂÊ¿ÉÇó£¬×î¸ß¾ØÐÎÖеãµÄºá×ø±êΪÖÚÊýµÄ¹À¼ÆÖµ£»
£¨¢ò£©¦Î¿ÉÄܵÄȡֵΪ0£¬1£¬2£¬3£¬ÀûÓùŵä¸ÅÐ͸ÅÂʼÆË㹫ʽÇó³ö¶ÔÓ¦µÄ¸ÅÂÊ£¬ÁгöƵÂÊ·Ö²¼±í£¬ÔòÆÚÍû¿ÉÇó£®
½â´ð ½â£º£¨¢ñ£©Éè¢Ù£¬¢Ú´¦·Ö±ðΪm£¬n£¬ÓÉ$\frac{m}{100}=0.050$£¬µÃm=5£»
Ôòn=100-£¨5+20+30+10£©=35£¬¡à[170£¬175£©ÄÚµÄƵÂÊΪ$\frac{35}{100}=0.35$£®
¡à¢Ù¡¢¢Ú¡¢¢Û´¦·Ö±ðÌî5¡¢35¡¢0.350£¬ÖÚÊýÊÇ172.5cm£¬
²¹È«ÆµÂÊ·Ö²¼Ö±·½Í¼Èçͼ3Ëùʾ£º
ͼ3
£¨¢ò£©Ó÷ֲã³éÑùµÄ·½·¨£¬´ÓÖÐÑ¡È¡20ÈË£¬Ôò¡°Éí¸ßµÍÓÚ170cm¡±µÄÓÐ5ÈË£¬
¡à¦Î¿ÉÄܵÄȡֵΪ0£¬1£¬2£¬3£¬
ÔòP£¨¦Î=0£©=$\frac{{C}_{15}^{3}}{{C}_{20}^{3}}=\frac{91}{228}$£»
P£¨¦Î=1£©=$\frac{{C}_{15}^{2}•{C}_{5}^{1}}{{C}_{20}^{3}}=\frac{35}{76}$£»
P£¨¦Î=2£©=$\frac{{C}_{15}^{1}•{C}_{5}^{2}}{{C}_{20}^{3}}=\frac{5}{38}$
P£¨¦Î=3£©=$\frac{{C}_{5}^{3}}{{C}_{20}^{3}}=\frac{1}{114}$£¬
Ôò¦ÎµÄ·Ö²¼ÁÐÈçÏ£º
¦Î | 0 | 1 | 2 | 3 |
P | $\frac{91}{228}$ | $\frac{35}{76}$ | $\frac{5}{38}$ | $\frac{1}{114}$ |
µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼Ö±·½Í¼£¬¿¼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿¼°Æä·Ö²¼ÁС¢ÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣮
A£® | sin¦Á=sin¦Â | B£® | cos¦Á=cos¦Â | C£® | tan¦Á=tan¦Â | D£® | ÒÔÉ϶¼²»¶Ô |
A£® | Ô² | B£® | ÍÖÔ² | C£® | Ë«ÇúÏß | D£® | Å×ÎïÏß |
A£® | -24 | B£® | 21 | C£® | 24 | D£® | 48 |